天道不一定酬所有勤
但是,天道只酬勤

HashMap完全解读

一、什么是HashMap

基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了非同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操作(get 和 put)提供稳定的性能。迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。所以,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。

HashMap和HashTable的区别

1.HashTable的方法是同步的,在方法的前面都有synchronized来同步,HashMap未经同步,所以在多线程场合要手动同步
2.HashTable不允许null值(key和value都不可以) ,HashMap允许null值(key和value都可以)。
3.HashTable有一个contains(Object value)功能和containsValue(Object value)功能一样。
4.HashTable使用Enumeration进行遍历,HashMap使用Iterator进行遍历。
5.HashTable中hash数组默认大小是11,增加的方式是 old*2+1。HashMap中hash数组的默认大小是16,而且一定是2的指数。
6.哈希值的使用不同,HashTable直接使用对象的hashCode,代码是这样的:

int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;

而HashMap重新计算hash值,而且用与代替求模:

int hash = hash(k);
int i = indexFor(hash, table.length);
static int hash(Object x) {
h ^= (h >>> 20) ^ (h >>> 12);
     return h ^ (h >>> 7) ^ (h >>> 4);
}
static int indexFor(int h, int length) {
return h & (length-1);
}

三、HashMap与HashSet的关系

1、HashSet底层是采用HashMap实现的:

public HashSet() {
map = new HashMap<E,Object>();
}

2、调用HashSet的add方法时,实际上是向HashMap中增加了一行(key-value对),该行的key就是向HashSet增加的那个对象,该行的value就是一个Object类型的常量。

private static final Object PRESENT = new Object(); public boolean add(E e) { 
    return map.put(e, PRESENT)==null; 
} 
public boolean remove(Object o) { 
    return map.remove(o)==PRESENT; 
}

四、HashMap 和 ConcurrentHashMap 的关系

关于这部分内容建议自己去翻翻源码,ConcurrentHashMap 也是一种线程安全的集合类,他和HashTable也是有区别的,主要区别就是加锁的粒度以及如何加锁,ConcurrentHashMap 的加锁粒度要比HashTable更细一点。将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

五、HashMap实现原理分析

1. HashMap的数据结构 数据结构中有数组链表来实现对数据的存储,但这两者基本上是两个极端。

数组:数组必须事先定义固定的长度(元素个数),不能适应数据动态地增减的情况。当数据增加时,可能超出原先定义的元素个数;当数据减少时,造成内存浪费。

数组是静态分配内存,并且在内存中连续。
数组利用下标定位,时间复杂度为O(1)
数组插入或删除元素的时间复杂度O(n)
数组的特点是:寻址容易,插入和删除困难

链表:链表存储区间离散,占用内存比较宽松。

链表是动态分配内存,并不连续。
链表定位元素时间复杂度O(n)
链表插入或删除元素的时间复杂度O(1)
链表的特点是:寻址困难,插入和删除容易。

哈希表

那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。

  哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:

image

 从上图我们可以发现哈希表是由数组+链表组成的,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key)%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。   HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。   首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。

六、HashMap的存取实现

既然是线性数组,为什么能随机存取?这里HashMap用了一个小算法,大致是这样实现:

// 存储时:
int hash = key.hashCode(); // 这个hashCode方法这里不详述,只要理解每个key的hash是一个固定的int值
int index = hash % Entry[].length;
Entry[index] = value;

// 取值时:
int hash = key.hashCode();
int index = hash % Entry[].length;
return Entry[index];

1)put

疑问:如果两个key通过hash%Entry[].length得到的index相同,会不会有覆盖的危险?   

这里HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。
打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。

public V put(K key, V value) {
        if (key == null)
            return putForNullKey(value); //null总是放在数组的第一个链表中
        int hash = hash(key.hashCode());
        int i = indexFor(hash, table.length);
        //遍历链表
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            //如果key在链表中已存在,则替换为新value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;
        addEntry(hash, key, value, i);
        return null;
}

void addEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e); //参数e, 是Entry.next
    //如果size超过threshold,则扩充table大小。再散列
    if (size++ >= threshold)
            resize(2 * table.length);
}

当然HashMap里面也包含一些优化方面的实现,这里也说一下。比如:Entry[]的长度一定后,随着map里面数据的越来越长,这样同一个index的链就会很长,会不会影响性能?HashMap里面设置一个因子,随着map的size越来越大,Entry[]会以一定的规则加长长度。

2)get

public V get(Object key) {
        if (key == null)
            return getForNullKey();
        int hash = hash(key.hashCode());
        //先定位到数组元素,再遍历该元素处的链表
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
}

3)null key的存取

null key总是存放在Entry[]数组的第一个元素。

   private V putForNullKey(V value) {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;
        addEntry(0, null, value, 0);
        return null;
    }


private V getForNullKey() {
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {
        if (e.key == null)
            return e.value;
    }
    return null;
}

4)确定数组index:hashcode % table.length取模

HashMap存取时,都需要计算当前key应该对应Entry[]数组哪个元素,即计算数组下标;算法如下:

 /**
     * Returns index for hash code h.
     */
    static int indexFor(int h, int length) {
        return h & (length-1);
    }

按位取并,作用上相当于取模mod或者取余%。 这意味着数组下标相同,并不表示hashCode相同。

5)table初始大小

public HashMap(int initialCapacity, float loadFactor) {
        .....
        // Find a power of 2 >= initialCapacity
        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;
        this.loadFactor = loadFactor;
        threshold = (int)(capacity * loadFactor);
        table = new Entry[capacity];
        init();
    }

七、解决hash冲突的办法

开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列) 再哈希法 链地址法 建立一个公共溢出区 Java中hashmap的解决办法就是采用的链地址法。

八、 再散列rehash过程

当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。

 /**
     * Rehashes the contents of this map into a new array with a
     * larger capacity.  This method is called automatically when the
     * number of keys in this map reaches its threshold.
     *
     * If current capacity is MAXIMUM_CAPACITY, this method does not
     * resize the map, but sets threshold to Integer.MAX_VALUE.
     * This has the effect of preventing future calls.
     *
     * @param newCapacity the new capacity, MUST be a power of two;
     *        must be greater than current capacity unless current
     *        capacity is MAXIMUM_CAPACITY (in which case value
     *        is irrelevant).
     */
    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }
        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable);
        table = newTable;
        threshold = (int)(newCapacity * loadFactor);
    }



/**
 * Transfers all entries from current table to newTable.
 */
void transfer(Entry[] newTable) {
    Entry[] src = table;
    int newCapacity = newTable.length;
    for (int j = 0; j < src.length; j++) {
        Entry<K,V> e = src[j];
        if (e != null) {
            src[j] = null;
            do {
                Entry<K,V> next = e.next;
                //重新计算index
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            } while (e != null);
        }
    }
}
(全文完)
欢迎关注HollisChuang微信公众账号
打赏

如未加特殊说明,此网站文章均为原创,转载必须注明出处。HollisChuang's Blog » HashMap完全解读

分享到:更多 ()

HollisChuang's Blog

联系我关于我